Cardiac angiotensin II type 2 receptor activates the kinin/NO system and inhibits fibrosis.
نویسندگان
چکیده
We have previously demonstrated that stimulation of the angiotensin (Ang) II type 2 receptor in vascular smooth muscle cells caused bradykinin production by activating kininogenase in transgenic mice. The aim of this study was to determine whether overexpression of AT2 receptors in cardiomyocytes attenuates Ang II-induced cardiomyocyte hypertrophy or interstitial fibrosis through a kinin/nitric oxide (NO)-dependent mechanism in mice. Ang II (1.4 mg/kg per day) or vehicle was subcutaneously infused into transgenic mice and wild-type mice for 14 days. The amount of cardiac AT2 receptor relative to AT1 receptor in transgenic mice was 22% to 37%. Ang II caused similar elevations in systolic blood pressure (by approximately 45 mm Hg) in transgenic mice and wild-type mice. Myocyte hypertrophy assessed by an increase in myocyte cross-sectional area, left ventricular mass, and atrial natriuretic peptide mRNA levels were similar in transgenic and wild-type mice. Ang II induced prominent perivascular fibrosis of the intramuscular coronary arteries, the extent of which was significantly less in transgenic mice than in wild-type mice. Inhibition of perivascular fibrosis in transgenic mice was abolished by cotreatment with HOE140, a bradykinin B2 receptor antagonist, or L-NAME, an inhibitor of NO synthase. Cardiac kininogenase activity was markedly increased (approximately 2.6-fold, P<0.001) after Ang II infusion in transgenic mice but not in wild-type mice. Immunohistochemistry indicated that both bradykinin B2 receptors and endothelial NO synthase were expressed in the vascular endothelium, whereas only B2 receptors were present in fibroblasts. These results suggest that stimulation of AT2 receptors present in cardiomyocytes attenuates perivascular fibrosis by a kinin/NO-dependent mechanism. However, the effect on the development of cardiomyocyte hypertrophy was not detected in this experimental setting.
منابع مشابه
Renin-angiotensin system and unilateral ureteral obstruction
Unilateral ureteral obstruction (UUO) is a clinical scenario that leads to obstructive nephropathy. UUO alters the expression of many mediators in the ipsilateral kidney. Renin-angiotensin system (RAS) is involved in UUO. Angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7) as the main arms of RAS influence kidney function which may alter by UUO. Ang II via Ang II receptor subtypes I (AT1R) ...
متن کاملP-218: Investigation of Association between Angiotensin II Type 1 and 2 Receptor (AT1R & AT2R) Gene Polymorphisms and Susceptibility to Pre-Eclampsia (PE) in Iranian Women
Background: Hypertension during pregnancy period along with the presence of protein in the urine, after the 20th weeks of gestation is called preeclampsia (PE). About five percent of all pregnancies are manifested with PE and its exact etiology has still remained unknown. The renin-angiotensin system (RAS) has an important role in the regulation of blood pressure during pregnancy and so pathoph...
متن کاملAngiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation.
Angiotensin II (Ang II) is a potent vasopressor peptide that interacts with 2 major receptor isoforms - AT1 and AT2. Although blood pressure is increased in AT2 knockout mice, the underlying mechanisms remain undefined because of the low levels of expression of AT2 in the vasculature. Here we overexpressed AT2 in vascular smooth muscle (VSM) cells in transgenic (TG) mice. Aortic AT1 was not aff...
متن کاملRenal sympathetic denervation improves cardiac dysfunction in rats with chronic pressure overload.
Varied causative and risk factors can lead to cardiac dysfunction. Cardiac dysfunction often evolves into heart failure by cardiac remodeling due to autonomic nervous system disturbance and neurohumoral abnormalities, even if the detriment factors are removed. Renal sympathetic nerve activity plays a pivotal regulatory role in neurohumoral mechanisms. The present study was designed to determine...
متن کاملAngiotensin-(1-9) attenuates cardiac fibrosis in the stroke-prone spontaneously hypertensive rat via the angiotensin type 2 receptor.
The renin-angiotensin system regulates cardiovascular physiology via angiotensin II engaging the angiotensin type 1 or type 2 receptors. Classic actions are type 1 receptor mediated, whereas the type 2 receptor may counteract type 1 receptor activity. Angiotensin-converting enzyme 2 metabolizes angiotensin II to angiotensin-(1-7) and angiotensin I to angiotensin-(1-9). Angiotensin-(1-7) antagon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2003